首页> 外文OA文献 >Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization
【2h】

Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization

机译:插值不等式,非线性流,边界项,最优性   和线性化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is devoted to the computation of the asymptotic boundary terms inentropy methods applied to a fast diffusion equation with weights associatedwith Caffarelli-Kohn-Nirenberg interpolation inequalities. So far, onlyelliptic equations have been considered and our goal is to justify, at leastpartially, an extension of the carr{\'e} du champ / Bakry-Emery / R{\'e}nyientropy methods to parabolic equations. This makes sense because evolutionequations are at the core of the heuristics of the method even when onlyelliptic equations are considered, but this also raises difficult questions onthe regularity and on the growth of the solutions in presence of weights.Wealso investigate the relations between the optimal constant in the entropy -entropy production inequality, the optimal constant in the information -information production inequality, the asymptotic growth rate of generalizedR{\'e}nyi entropy powers under the action of the evolution equation and theoptimal range of parameters for symmetry breaking issues inCaffarelli-Kohn-Nirenberg inequalities, under the assumption that the weightsdo not introduce singular boundary terms at x=0. These considerations are neweven in the case without weights. For instance, we establish the equivalence ofcarr{\'e} du champ and R{\'e}nyi entropy methods and explain why entropymethods produce optimal constants in entropy - entropy production andGagliardo-Nirenberg inequalities in absence of weights, or optimal symmetryranges when weights are present.
机译:本文致力于渐近边界项的熵方法的计算,该方法应用于权重与Caffarelli-Kohn-Nirenberg插值不等式相关的快速扩散方程。到目前为止,仅考虑了椭圆方程,我们的目标是至少部分地证明对carr {\'e} du champ / Bakry-Emery / R {\'e} nyientropy方法的推广到抛物线方程。这是有道理的,因为即使仅考虑椭圆方程,演化方程仍是该方法启发式方法的核心,但这也引起了关于权重存在时解的正则性和解的增长性的难题。我们还研究了最优常数之间的关系熵-熵生产不等式,信息-信息生产不等式的最佳常数,演化方程的作用下广义R {\'e} nyi熵的渐近增长率和Caffarelli对称破缺问题的最优参数范围-在权重不引入x = 0处的奇异边界项的假设下-Kohn-Nirenberg不等式。即使没有重量,这些考虑也是新的。例如,我们建立了carr {\'e} du champ和R {\'e} nyi熵方法的等价关系,并解释了为什么熵方法在没有权重的情况下产生熵的最佳常数-熵产生和Gagliardo-Nirenberg不等式,或者当重量存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号